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LIQUID CRYSTALS, 1988, VOL. 3, No. 8, 1055-1072 

A theoretical study of micro-domain formation in mixed 
lipid membranes 

by ANTONIO RAUDINO 
Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria 8-95 125, 

Catania, Italy 

(Received 16 November 1987; accepted I February 1988) 

The thermodynamic stability of micro-clusters in a membrane built-up by 
charged and uncharged lipid molecules is discussed. A simple variational function 
is proposed in order to describe the essential structure of such lipid domains. 
Solvent-screened electrostatic repulsion between the lipid ionic head groups, short- 
range forces between the lipid hydrophobic taisl and entropic effects are taken into 
account. The stability conditions as well as the composition and the size of the lipid 
micro-domains are calculated and expressed as a function of molecular parameters 
for the membrane and its environment (for example, short-range forces, surface 
charge density of the lipid bilayer, ion concentration of the electrolyte solution in 
contact with the lipid membrane and temperature). As an application, the effect of 
micro-domain formation on the number of adsorbed ions on a charged lipid 
membrane has been calculated. 

1. Introduction 
The clustering of lipid molecules into micro-domains richer in one component is 

an interesting phenomenon taking place both in natural and model membranes. This 
has been postulated as a rationale of facts concerning the mobility and function of 
proteins imbedded in the lipid bilayer [ l ,  21, the modulation of the trans-membrane 
potential [3,4], neurotransmitter release [5] and fusion between lipid vesicles [6-lo]. 
Different experimental techniques have been proposed to follow such a phenomenon. 
Among these are spin [ 11-14] and fluorescence [15-171 probes, differential scanning 
calorimetry [ 18-1 91, Raman spectroscopy [20] and freeze-fracture electron micro- 
scopy [21-231. In addition the dramatic effects of some substances in inducing domain 
formation has been investigated (chiefly divalent cations (see e.g. [24])), H+ [I  11 and 
proteins [ 16,25-281. 

Unfortunately, little attention has been paid in developing theoretical models of 
such a phenomenon, except some thermodynamic approaches based on the theory of 
binary mixtures [29-3 11. An interesting computer simulation, performed by a Monte 
Carlo technique, suggests a large fluctuation of composition within a composite lipid 
membrane, the extent being strongly affected by the molecular properties of the lipid 
components [32,33]. In this paper I propose a simple analytical model linking the 
structure of lipid micro-domains to the physical properties of individual components 
of the membrane. However, instead of following the usual methods employed to 
study order-disorder transitions (e.g. the calculation of short and long range order 
parameters [34]), I adopt a different standpoint, minimizing the energy of the system 
with respect to geometrical parameters of the micro-structures (mainly the size and 
the ratio between A and B lipid molecules within the clusters). This approach allows 
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1056 A. Raudino 

the study of some interesting phenomena which depend strongly on the distribution 
of charged and neutral lipids over the membrane plane: for example the adsorption 
of charged molecules on the cell surface. This kind of approach requires some drastic 
assumptions in order to limit the number of variational parameters needing to 
describe the local microstructures. Its advantage is a relatively simple mathematical 
formalism, a physical picture of the main driving forces and the gain of information 
concerning the magnitude of compositional fluctuations within the lipid bilayers. 

2. Theory 
For structural considerations membrane lipids can be treated as bimodal rod-like 

molecules, one end of the rod is hydrophilic, the remainder hydrophobic. The hydro- 
phobic tails tend to align themselves in such a way to minimize contact with water, 
while the hydrophilic polar heads interact favourably with water. The formation of 
micro-domains richer in one component will change the whole energy of the mem- 
brane. In particular, the energy contributions affected by the clustering are: 

The solvent-screened electrostatic repulsion between the ionic head groups of 
charged lipids. We expect increased repulsion as a consequence of cluster 
formation. 
The short range interactions (mainly van der Waals forces between the hydro- 
carbon tails of lipid molecules and/or salt bridges formed by divalent cations 
and ionic lipid ends [24]). We expect that strong interactions between like 
molecules favour the formation of local microstructures. 
Entropy effects. The mixing entropy decreases as a consequence of the cluster- 
ing process. 
Other energy contributions are little affected by variations in the lipid distri- 
bution within the membrane and are not considered here. 

The next step is the choice of the more significant parameters defining the clusters 
structure. This choice is not unequivocal. In the simplest model only two parameters 
are needed to define the domain structure: the size D and the composition H .  In more 
detail, H is defined as the maximum deviation of lipid B concentration from its mean 
value TB, while D is the mean distance between the centres of the clusters (see 
figure 1). Then, the local lipid B concentration &(x, Y )  calculated at a generic point 
X ,  Y over the membrane plane can be expressed by means of the trial function 

where A is related to D through 1 = 2n/D. The parameters H and 1 are to be 
determined by a variational procedure. An implicit approximation in equation (1) is 
the assumption that the clusters size distribution is infinitely narrow, i.e. all the 
micro-domains have the same size. By inserting more terms in the Fourier series 
expansion of ee (X ,  Y )  we can take into account a broad distribution of domain size. 
On the other hand, it has been proved that simple variational functions often contain 
the essential features of a phenomenon. As an example, we recall the linear combi- 
nation of atomic orbitals approximation widely used in quantum chemistry, or a 
recent variational procedure applied in a study of micelles [35]. 

Since we have defined the parameters to be optimized, in a further step we have 
to express each energy contribution as a function of such parameters. This can be 
done in the following way. 
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Micro-domains in mixed lipid membranes 1057 
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Figure 1 .  A schematic picture of a lipid membrane. The black and white dots represent the 
charged and neutral lipid head groups, respectively. On the Z axis perpendicular to the 
membrane plane is shown the charge density as a function of the spatial coordinates X 
and Y parallel to the lipid phase. D is the lattice constant of the lipid micro-domains. 

(a )  Electrostatic energy 
The solvent screened electrostatic repulsion between the charged head groups of 

lipid molecules can be written as 

where q: is the net charge of the head groups, @(rL,) is the electrostatic potential 
(dimensionally corrected) between these charged ends and the sum is over the charged 
species B. A simple but reliable analytical function for @(r,,) is [36] exp (- Icr,, )/Er,,, 
K being the Debye kappa (K’ = 87cq2CO/~kT), C,, and E are the ion concentration and 
dielectric permittivity of the electrolyte solution in contact with the lipid ends. The 
evaluation of equation (2) can be easily performed by using cylindrical coordinates, 
r and fj. This allows us to write the interaction of a generic i-th charged end with its 
neighbours as 

where a is the mean distance between the lipid ends and N is the number of lipids 
forming the membrane ( N  + a). The concentration of the charged ends @,(T, q )  
is given by equation (I) .  In order to evaluate the double integral appearing in equation 
(3) we must express the Cartesian coordinates X, and I; as a function of r and 4. This 
can be done noticing that the origin of the coordinate system has been put on the i-th 
atom (see figure 2); then 

X, = x. + rcosfj, 

5 = r, + rsinfj. 
Combining equations (l), (3) and (4) and rearranging we obtain 

(4) 

x exp (- Icr) dr d$, ( 5 )  
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1058 A. Raudino 

Figure 2. The coordinate system used in evaluating the electrostatic potential of a planar 
periodic charge distribution (see equations (2)-(5)). X and Y lie on the membrane plane, 
D is the lattice constant of the lipid micro-domains (see figure 1). The remaining 
parameters are defined in the text. 

where 

Re-inserting equation (5) into equation (2) and using equation (1) we find 

H 
2 E, = - C 1 & + - (COS AX, + COSAY,)  

Ea2 q2 x, Y, ( 
where 

H 
(Fl cos - F2 sin A X ,  + F,cos I I  Y. - F4 sin A x )  

F, and F, are the double integrals over r and 4 

F, = j,'" jaNa exp(- w) dr dd;  F, = j,'" jaNaf . (r ,  4) exp(-w) dr d4. (6 a) 

The sums over x. and are very easy, the final result is 

where 

F, = jo'" jaNa exp (- m) dr d4 

271 
= -exp(-rca) 

K 

The double integrals Fl and F3 can be factorized into the sum of products of simple 
integrals with the aid of the formulae [37] 
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Micro-domains in mixed lipid membranes I059 

where J,,(X) are Bessel functions of the first kind. The integration over q5 is trivial and 
leads to: Fl = F,. More difficult is the integration over d. It can be performed 
analytically and is described in Appendix I .  Combining these results with equation 
(7), we obtain, eventually 

where 

Equation (9) is exact; it is an expansion in a power series of Aa and it is a good 
approximation because both the interlipid distance a ( TZ 10 A [38]) and 1 / ~  (w lOA at 
physiological salt concentration) are much smaller than D (A = 2n/D, see figure 1) .  
Equation (9) is the required formula connecting the electrostatic repulsion between 
the charged lipid ends to H and A, the variational parameters describing the micro- 
domains structure. As expected, when H -, 0 we obtain the formula for a uniformly 
charged plate imbedded in an electrolyte solution. Moreover, when Aa + 0 (complete 
lateral phase separation) the electrostatic repulsion shows a maximum. 

(b)  Short range energy 
The variation of the short range energy (mainly van der Waals interactions 

between the hydrocarbon tails of lipid molecules) as a function of the micro-domain 
structure can be calculated following the same procedure which was used in the 
previous sub-section. The short range energy can be written as 

1 
ESR = - 1 msmyGSs(r i j ) ,  

2 S,S i j + i  

where GSs(ri,) is the short range energy per unity of mass between S and S’ lipid 
molecules located at the generic sites i and j (Sand S‘ = A or B) .  my is the probability 
of finding a molecule of type S at site i; an analogous definition is valid for m; . In 
contrast to the electrostatic energy, the sum is now over A and B species. Since the 
short range energy decreases rapidly with the intermolecular distance, we can approxi- 
mate GSS(r , - )  by 

+a, rij < a, 

- wss, rij = a, 

rij > a, 

where a is the interlipid distance. Assuming the distribution given by equation (I), we 
have 

and 
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I060 A. Raudino 

Combining the previous equations and using the same procedure adopted in the 
previous sub-section, we obtain, eventually 

where 

E&? = - Z N ( - F A  W,, + Zi WEB 2 2 A  -FB WAB) 

and the parameter W is defined as 

w $(W,A + W E B  - 2wAB). 
Equation (12) gives the variation of the short range energy as a function of the 
variational parameters H and 1. E$? is the contribution corresponding to a random 
distribution of A and B lipid molecules, while the remaining term in the right hand 
size of equation (12) represents the correction caused by lateral phase separation. 
Since 1u 4 1, it follows that Jo( la)  > 0, so that the sign of the correction depends 
upon the sign of W. In consequence strong interactions between like lipid molecules 
favour the thermodynamic stability of micro-domains. 

(c) Entropy 
Insofar as we have considered only the energy contributions to the total free 

energy, now we want to calculate the mixing entropy term given by: 

F,ix = - TIIS,,, 

= -kTlogg(H, 1). (13) 
The combinatorial factor g(H,1 )  is the number of ways to arrange NA and NB 
molecules in such a way that the local density of A and B follows a prescribed 
function. When all the lattice sites are equivalent, g is given by the formula [39]: 
[(NA + NB)!] / (NA! NB!) .  On the other hand, when all the sites are different we have 
g = 1. In the present case we expect an intermediate situation between these two 
limiting cases. 

Let M be the number of different sub-lattices each having the same composition 
(i.e. the same A / B  ratio), then, g(H,  1) can be written as [40] 

M 

2) = n gn, (14) 
n = l  

where gn is the combinatorial factor for each sub-lattice. Instead of the discrete 
variable n, it is useful to introduce a continuous one, say t, defined as the deviation 
of the local density from its mean value 

t 5 @ B ( X  Y )  - ( @ B >  

= eB(X,  Y )  - &,. 
The limiting values of [ are: - H 6 5 < + H (see figure 3). If we let NA([)  and N B ( t )  
be the number of A and B molecules in each sub-lattice 5 ,  we have 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
0
0
 
2
6
 
J
a
n
u
a
r
y
 
2
0
1
1



Micro-domains in mixed lipid membranes 1061 

“t 

X 

Figure 3. Graphical calculation of the number of sites having the same charge density. 5 is 
the deviation of the density from its mean value, while the spatial coordinates X and Y 
are parallel to the membrane surface and D is the lattice constant of the lipid micro- 
domains (see figure I).  The number of sites is proportional to 1 ( { )  (see text). 

NA(<)  and NB(5) can be calculated as follows. First we need to calculate the number 
of sites N ( 5 )  having the same 5 value. This can be done in an easier way by considering 
an elementary cell whose dimensions are D x D (see figure 1). Let n(5) be the number 
of sub-lattices within this cell, it is proportional to l (5 )  which is defined as the length 
of the cut between the surface defined by 

= @ B ( X ,  y >  - ( @ B >  

and the plane Z = 5 (see figure 3 ) .  Clearly n(5) = 1(5)/a, where a is the diameter of 
a lipid molecule. N ( 5 )  can be obtained by multiplying n(5) by the number N of 
elementary cells lying on the membrane plane. Let N be the total number of lipid 
molecules, we must have then N D 2  = Nu2 or N = N ( a / D ) 2 .  Combining the 
previous equations, we find 

N(5)  = J - 4 5 )  

(16) 
a 

= W5) 9; 
the calculation of I ( g )  can be performed following standard methods of differential 
geometry to give 

I(() = 2 s’”” [ 1 + (gr] dx,  
~ 0 / 2  

where Y = Y ( X )  is defined implicitly by 

5 = y )  - zB .  

Inserting equation (1) into the previous expression and rearranging we have 

Y(<,  X )  = - l arccos - - c o s l x ) .  (: 
Unfortunately, the integral (1 7) cannot be expressed in closed form. However, since 
5 < 1 ,  we may expand 1(5) in a power series as 

(8) Z(5) = a, + a,5 + a2t2 + a 3 t 3  + . . . , 
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1062 A. Raudino 

where the coefficients ai are to be determined. Since l ( 5 )  must remain unchanged when 
we replace 5 by - 5 ,  it follows that a, = a3 = 0. Moreover, when 5 --* /HI, l(5) must 
tend to zero (see figure 3). On the other hand, when 5 -+ 0, the integral (17) can be 
calculated analytically yielding 

i(o) = 23/20. (19) 

Making use of these results we can calculate a0 and a2, allowing us to rewrite equation 
(18) as 

and combining equations (16) and (20) we obtain the required formula 

Obviously, the upper limit of 5 ,  say 5,,,, must be selected in such a way that the 
normalization condition Xcmax N(5)  = N is fulfilled 

Knowledge of N(5)  allows us to calculate NA(5) and NB(() in a straightforward way, 
in fact they are given by 

NA(0 = N ( 5 )  - e a ( K  Y )  

= N ( 5 M A  - 5 )  (22 4 

(22 6) 

NB(<) = N ( 5 )  ’ @B(x ,  y ,  1 = N ( 5 ) ( X B  + 5) .  
Now, inserting equation (22) into equations (14) and ( 1  5), applying Stirling’s approxi- 
mation 

IogP! = PlogP - P, (P s I )  

and remembering that X,, + fB = 1, we obtain 

logg jt N ( ( ) [ -  (-6 - 5 )  log ( X A  - 5 )  - ( fB + 8 log cXB + 5)l & 

where N ( t )  is given by equation (21). 
The last step is the integration of equation (23). This can be done in a simpler 

manner by means of the saddle point method [41]. In fact, when we confine our 
analysis to the region of equimolecular composition (XA = XB = i), the greatest 
contribution to the integral arises in the neighbourhood of 5 = 0, where both N ( 5 )  
and ~ ( 5 )  have a maximum. Then, making use of the identity 

e(5) = exPloge(0 

and expanding e(5) = N ( { ) T ( ~ )  in a power series in 5 
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Micro-domains in mixed lipid membranes 

we can rewrite integral (23) as 

1063 

Since the main contribution to the integral occurs in the neighbourhood of 5 = 0, we 
have replaced t,,, with 00; then 

Remembering that 

O ( t )  = N(5) - z(5), 

N(5) and z($ being defined by equations (21) and (23), and that 

= 0, 

we obtain 

a 1 ( ~(10g2)~  )"' 
D H 2 + log2 ' 

iogg zz ~2312 - - - 
which, combined with equation (13) gives the required formula for the entropy 
contribution o the free energy expressed as a function of the variational parameters 
H and I 

Equation (28) shows the correct trend; in fact, large values of H or small values of I 
(large domains) lead to small mixing entropy contribution. Unfortunately, equation 
(28) does not give the correct limit as H tends to zero. This is due to the failure of the 
saddle-point integration technique which can be applied only when the integrand 
shows a sharp peak for some values of the variable of integration. When we consider 
small inhomogeneities in the lipid distribution (small H values) the integrand shows 
a broader peak leading to the break-down of the saddle-point approximation. How- 
ever, in the limit H + 0, the calculation of the entropic contribution can be performed 
starting from equation (14) and putting here M = 1. The final result is the well- 
known formula 

FM,x = PNkTlog2; 8 A  = 8 6  B 8 - 2  - I. (29) 

( d )  Minimization procedure 
The total free energy of the lipid membrane expressed as a function of the 

variational parameters can be obtained by summing the electrostatic (equation (9)), 
short range (equation (12)) and entropy (equation (28)) contributions. Rearranging 
we have 

C - F"' 
FTOT/N - TOTIN - -La H + H Z ( A  - B12a2), 
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1064 A. Raudino 

where F$& is the total free energy of the membrane, calculated assuming a random 
distribution of A and B molecules, and the other symbols are 

+ Ica + $ic’a’)exp(-Ica) - 

All the other symbols have been defined previously. The parameters H and 1 can be 
obtained by the standard procedure. Differentiating equation (30) with respect to Aa 
we find 

2BH2Aa = 0, 
C - - _ -  -- - aFTOT 

N a(1a) H 

then 

Since A must be positive (A is the reciprocal of a length) and both C (see equation 
( 3 1  c)) and H are positive, it follows that the condition B < 0 must be fulfilled. 
Within this condition, it is easy to see that the extremal point ( 3 3 )  is a minimum. 
Inserting now equation ( 3 3 )  into equation (30) we have 

- F#T/N +  AH^ + - (FToT/N)I=A+, ,~ - (34) 
C’ 

4BH4 ’ 

Since it can be proved that the condition B < 0 implies also A < 0 (see equation 
( 3  I)), we conclude that the function defined by equation (34) must have a maximum 
in the range of the allowed values of H (0 d H d 4 for TA = zB = 4). These trends 
are shown qualitatively in figure 4 where on the z axis we give the total free energy 
per lipid molecule, while on the remaining axes we show the parameters Hand  1. The 

Figure 4. Free energy per lipid molecule versus the Hand 3, parameters (schematic). The more 
likely H values are 0 or 1/2. 
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Micro-domains in mixed lipid membranes 1065 

real shape of the energy surface depends on physical parameters of the membrane and 
its environment (salt concentration, temperature, short-range forces etc.) but the 
general trend is that shown in the figure. As a consequence of this particular shape, 
we expect that the most likely values of H are 0 or 4, depending on the relative energy 
of the system calculated at these points. Then, the thermodynamic condition for the 
stability of the micro-domains is that the difference between (FTOTIN)I=IM,N and 
(FTOTIN)RANDOM is less than zero. Making use of equation (34) we have H = 1 / 2  

- 4C2 A 
B 4  

- - + - + TAS'" < 0, (35 4 

where AS'" is the mixing entropy contribution calculated for a random distribution 
of charged and neutral lipid molecules (AS'') = Nk log 2). This inequality must be 
fulfilled within the other condition (see equation (34)) 

B < 0. (35 b) 

Equations ( 3 9 ,  together with equation (33) are the main results of this paper. They 
give the thermodynamic conditions for micro-domain formation as a function of the 
molecular structure of the membrane as well as some information about the size of 
such aggregates; this topic will be discussed in the Results section. The validity range 
of the previous equations is limited by the constraints l a  $ 1 and A / K  $ 1. These 
conditions allow us to study only large domains, far from the transition point. These 
limitations could be avoided by retaining more terms in the series expansions of 
equations (9) and (12). Unfortunately, this procedure leads to very complicated 
non-linear equations which could only be solved numerically. 

(e)  Zon adsorption on a charged lipid membrane 
As an application of this model, let us calculate the effect of micro-domain 

formation on the number of adsorbed ions on a charged lipid membrane. Since the 
release or uptake of ions by biological membranes can be modulated by lateral phase 
separation of the membrane lipid components, this model may be used to investigate 
receptorial properties of charged lipid bilayers. 

The excess of charge at the point z from a charged surface is defined as 

&(z) = C+(z) - C _ ( Z )  

where Co is the bulk concentration of the electrolyte solution, q is the ion charge and 
@(z) is the solvent-screened electrostatic potential calculated at a distance z from the 
charged surface. The potential @(z) can be partitioned in two contributions. The first, 
@('I, is that produced by a uniform charge distribution on the membrane surface; it  
depends only on the z coordinate. The second, @ I ) ,  takes into account the effects 
arising from inhomogeneities of charge distribution and depends also on the x and y 
coordinates ( x  and y are parallel to the membrane plane). Since @(') p @ I )  we can 
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1066 A. Raudino 

develop equation (36) in a power series of @"'; simple albegra gives 

The mean excess of charge calculated at a distance z from the membrane plane can 
be calculated by averaging equation (37) with respect to x and y .  This can be done if 
we have an explicit equation for @ ( I )  as a function of the x and y coordinates. The 
calculation can be performed following the same procedure used in deriving the mean 
electrostatic energy of a charged membrane, the only difference being that we must 
replace r by (r2 + z2)1/2 in the equation for the electrostatic potential (equation (3)). 
Simple algebraic manipulations lead to 

(38) 

where the symbols have been defined in equation (3). Equation (38) can be put in a 
more useful form, viz 

@(z) = + @ ( I )  

where 

and 

exp [ - ~ ( l . 2  + z ~ ) " ~ ]  
rdr d$, 

the functionsf,(r, 4) are defined in equation (5). Averaging now equation (37) with 
respect to x and y and making use of equations (39), eventually we obtain 

where 

G: ( @ ( I ) * )  = -.-. Q2 H 2  
E2a4 4 

and 0.'') is defined by equation (39 a). The last step is the evaluation of the integrals 
Go and GI appearing in equations ((39a) and (41)). The calculation of Go is simple and 
the result is 

exp ( - KZ) Go = 2a 
U 
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The evaluation of G, is more difficult; no analytic expression can be obtained. 
However, if we are interested in the region near the membrane surface, a simple 
asymptotic equation can be obtained. Its proof is given in appendix 2 although the 
final result is 

exp ( - tiz) GI x 2n 
ti 

Combining now equations (39) to (42), we obtain eventually 

(6c(z)), ,, x 2C0 sinh 

In the framework of the present theory, H can assume only the values 0 or +. 
H = 0 corresponds to a random distribution of A and B molecules, while H = $ 
indicates the formation of lipid domains. The other parameter A (linked to the domain 
size D through: 1 = 2n/D) can be obtained from equation (33). It is not an inde- 
pendent parameter, being related to structural properties of the lipid membrane and 
its environment (surface charge density, ionic strength, temperature, etc.). Con- 
sequently, the dependence of ( 6 c ( z ) ) ,  ,, on the electrolyte concentration is quite 
complex. On one hand, increasing the ion concentration screens the electrostatic 
potential inside the aqueous phase and so reducing the number of adsorbed ions. On 
the other hand, high ionic strength favours the formation of lipid micro-domains and, 
consequently, a stronger electrostatic potential is produced, leading to a larger 
number of adsorbed ions. A detailed analysis of such effects will be discussed in the 
following section. 

3. Results and discussion 
We now calculate the size and stability of lipid micro-domains by means of the 

formulae developed in the previous section. In particular, equation (33) gives the 
mean lattice constant of the lipid aggregates, while equations (35) determine their 
stability condition. 

The parameters temperature and interlipid distance were kept constant and set 
equal to 298 K and 10 A, respectively. This latter figure is a common value found for 
phospholipid bilayers [38]. The dielectric constant of the lipid-water interface region 

was set equal to 30 [42-441 and the ionic concentration of the univalent symmetric 
electrolyte was considered as a variable. In the limit of zero ionic strength the present 
theory is no longer valid, so the condition A / t i  4 1 has always been satisfied in our 
numerical calculations. The short range forces parameter W (see equation (1 2)) was 
taken as an adjustable coefficient as will be discussed later. The results are shown in 
figure 5 where we show the mean size of lipid clusters D versus the ion concentration 
of the electrolyte solution in contact with the membrane. A rapid growth of D 
followed by saturation can be observed. At physiological ion concentration 
( ~ 0 . 1  molel-I) the salt effect is still relevant. Increase of the short range forces 
parameter W leads to larger D values, the dependence of D on W being almost linear. 
Finally, the stability of lipid domains was tested by the two inequalities given in 
equations (35); in all the cases examined the domain structure is more stable than the 
random one. 
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D’A 120 1 II 

/ 
I 

0.1 0.2 0.3 .Ce/M 

Figure 5.  Lattice constant D versus ionic concentration C, of the electrolyte solution in 
contact with the lipid membrane. Curves I and I1 have been calculated putting the 
short-range forces parameter W equal to 17 and 25 kJ/mole, respectively. 

The ionotropic formation of lipid aggregates is a well-known phenomenon. 
Unfortunately, most of the data refer to divalent cations (mainly Ca2+ [24]) generally 
mixed with buffers and/or non-specific monovalent ions. Moreover, only very indirect 
information about domain size can be drawn from the spectroscopic or calorimetric 
variations observed as a result of the lateral phase separation of lipid components. 
Consequently, the main aim of this work is to show that despite the unfavourable 
entropic and electrostatic interactions, the formation of stable micro-domains is a 
likely phenomenon which can be triggered by spending a little amount of energy. In 
fact, numerical calculations showed that an energy difference of about 17-25 kJ/mol 
between like and unlike lipid molecules it is sufficient to produce large micro-domains 
(- 100 A in diameter). This energy can be supplied by divalent cations which form salt 
bridges between the charged head groups of ionic lipids [45]. 

Another interesting, related aspect is the study of the effects of lateral phase 
separation on the number of adsorbed ions on the membrane plane. These effects have 
been calculated by means of equation (43) and the results are shown in figure 6. Here, 
we report the difference of concentration (6c(z)), between positive and negative 
ions calculated at a distance z from the membrane plane versus the bulk ion con- 
centration co of the electrolyte solution in contact with the membrane. Curve a 
has been calculated assuming a random distribution of charged and neutral lipid 
molecules, curves b and c have been obtained taking into account domain formation 
at the interface and putting the short range forces parameter W equal to 17 and 
25 kJ/mole, respectively. The parameter A appearing in equation (43) has been cal- 
culated by equation (33) and H was set equal to 3 (see the previous section). z was 
put equal to 5 A and the values of the other parameters have been stated previously. 
As we can see, the effect is quite large; the formation of micro-domains always 
increases the number of adsorbed ions, the effect being dramatic for large values of 
W and at low ionic strength. However, the effect is still relevant at  physiological 
electrolyte concentrations. Modulation of adsorbed ions concentration through 
lateral phase separation of lipid components could be a common mechanism in living 
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0.1 0.3 

Figure 6. The excess charge (6c(z)),, versus ionic concentration C, of the electrolyte solu- 
tion in contact with the lipid membrane. All of the calculations were performed by 
putting z = 5 A. Curve a was calculated assuming a random distribution of charged and 
neutral lipid molecules. Curves b and c were obtained for a lipid membrane showing 
lateral phase separation putting the short range forces parameter W equal to 17 and 
25 kJ/mole, respectively 

cells, as suggested by some authors [3,4]. Its reliability is confirmed by the present 
calculations; however a deeper analysis deserves more work and will appear in a 
forthcoming paper. 

I am indebted to Mrs. P. Bianciardi for the helpful technical assistance. This 
research was partially supported by the Italian Minister0 della Pubblica Istruzione. 

Appendix 1 
The calculation of the electrostatic energy of a periodic planar charge distribution 

(see equation (2)) requires the evaluation of the integral 

W 

Z, = 1 J,(At) exp(-rcr) dr, (1.4 1) 

where J,(At) is a Bessel function. Making use of the integral representation of Bessel 
functions [46], 

J , (X)  = - cos(Xsin8 - no) do, (1‘4 2 )  : s,’ 
and interchanging the order of integration, we can rewrite equation (1A I )  as 

1 
+ $ s,‘ sin no ( Ipo exp (- vx) sin bX dX 

1 Z, = 7111 jon cos no ( s,’ exp ( -  vx) cos b X  dX d8 

(IA 3) 
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where we have used the shortened notation b SE sine, v s KIA and p = l z .  The 
integration over dX can be carried out analytically and the final result is 

exp(-lcz) ’ 
In = xl i, {cos ne(v cos ( p  sin e) - sin 8 sin ( p  sin 0)) 

d8 
v2 + sin’8‘ 

+ sin nO(v sin ( p  sin 0) + sin 8 cos (p sin 0))) - 
Expanding cos ( p  sin 0) and sin (p sin 8) in a power series of Bessel functions [37] and 
inserting them into equation (1A 4), we can evaluate the integral In . It is easy to prove 
that most of the integrals appearing in the series expansion of In vanish. Collecting the 
surviving terms, we obtain, after some algebra, 

where the function yn is defined as 

1 ,  n = 2 , 4 , 6  , . . . ,  

0, n = 0 , 1 , 3  , . . . ,  
6, is the kronecker delta and Fn is the integral [47] 

where 

b E (2v’ + l ) - ’ .  

when n = 0, equation (1A 5) reduces to the result reported in equation (9). It is worth 
noting that in the limit z + 0 we obtain: I, = (K‘ + l’)-’/’, a well-known result [46]. 

Appendix 2 
The integration over d4 of the double integral GI defined in equation (40b) can 

be performed following the same procedure employed to evaluate equation (6). 
Expandingf,(r, 4)  = cos(Arcos~)  in a power series of Bessel functions [37] and 
integrating over d 4 ,  equation (40 b) reduces to 

where we have replaced Nu by 00. Making the change of variable t = (? + z2)’I2, 
equation (2A 1) becomes 

GI = 2n Jo(l(t’ - z’)~’ ’ )  exp(-ict) dt. s.“ 
Using the series expansion [37] 
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we can rewrite equation (2A2) as 

1 Az2 " J,,(At)exp(-Ict) dr + 2n 1 - - 
" = I  a! ( ) . J z  y e x p ( - I c t )  dt. 

(2A 4) 
The first integral has been calculated in Appendix 1. An exact evaluation of the 
remaining integrals is not necessary because their coefficients are proportional to 1" 
(a 2 l), which is a small number if z is not too large. Confining the calculation in the 
range of small z values, we note that J,(At)/t" is a slowly varying function with 
respect to exp (- ~ t )  ( J u ( l t )  N (1t/2)"/r(a + 1)  see [37], and then can be put outside 
the integral symbol. Performing the integrations, the final result is 

+ 2n 

Expanding equation (2A 5) in a power series of 1Z and 1/1c and disregarding terms 
higher order than A', we obtain the result reported in equation (42 b).  
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